PRODUCTS

Products

Antibody



Gli Anticorpi Monoclonali agiscono con il medesimo meccanismo d'azione appena descritto per gli Anticorpi policlonali in quanto possiedono un'affinità altamente specifica per un determinato tipo di antigene e si legano ad esso, consentendo in questo modo di ottenere una marcata risposta immunitaria nei confronti di quella tossina, proteina, mediatore chimico, cellula maligna o agente patogeno che costituisce il target della terapia.
UTILIZZO E NOMENCLATURA DEGLI ANTICORPI MONOCLONALI
Nella pratica clinica, i MAbs vengono utilizzati in numerose applicazioni diagnostiche e terapeutiche (sia in quanto tali, sia come agenti veicolatori di farmaci su bersagli specifici).
In ambito terapeutico essi vengono impiegati fondamentalmente come agenti:
- Immunosoppressori
- Antineoplastici
- Inibitori dell’angiogenesi
- ADC – Antibody Drugs Coniugate
- Altri (es antiaggreganti)
La nomenclatura degli Anticorpi Monoclonali è uno schema di denominazione utilizzato per assegnare il nome generico (o non-proprietario) agli Anticorpi Monoclonali.
Lo schema di denominazione sotto riportato è utilizzato sia dall'Organizzazione Mondiale della Sanità con l'International Nonproprietary Names (INN) che dagli Stati Uniti con lo United States Adopted Names (USAN) per i prodotti farmaceutici. 
Tutti i nomi di un Anticorpo Monoclonale terminano con la desinenza (-MABS). A differenza di molti altri prodotti farmaceutici, la nomenclatura di un Anticorpo Monoclonale usa differenti parti della parola precedente (morfemi) a seconda della struttura e funzione. Questi sono ufficialmente chiamate come sotto-radici (substems) e talvolta erroneamente come infissi (infixes).

I MAbs che saranno prodotti da AEQ PHARMA sono i seguenti:
1. BEVA CI ZU MAB 
2. ADA LIM U MAB
3. TRAS TU ZU MAB
4. RITUXIMAB
5. CETUXIMAB
6. PEMBROLIZUMAB
7. ANAKINRA
8. CANAKINUMAB
9. PERTUZUMAB
10.GEMTUZUMAB
Il primo ciclo di MAbs biosimilari e proteine di fusione con date di scadenza del brevetto tra il 2012-2018 include RITUXIMAB, TRASTUZUMAB, ETANERCEPT, INFLIXIMAB, BEVACIZUMAB, CETUXIMAB e ADALIMUMAB.
Sulla base delle ricerche di mercato e della domanda di partnership, AEQ PHARMA sta individuando ulteriori candidati dal prossimo round di MAbs con date di scadenza del brevetto dal 2019 al 2023. Questi includono ABATACEPT, GOLIMUMAB, OFATUMUMAB, AFILBERCEPT, ALEMTUZUMAB, DENOSUMAB, OMALIZUMAB, PALIVIZUMAB, PERTUZUMAB, ECULIZUMAB, TOCILIZUMAB, IPILIMUMAB, RANIBIZUMAB, RAMUCIRUMAB, PEMBROLIZUMAB E NIVOLUMA
M


Antibody

con il medesimo meccanismo d'azione appena descritto per gli Anticorpi policlonali in quanto possiedono un'affinità altamente specifica per un determinato tipo di antigene e si legano ad esso, consentendo in questo modo di ottenere una marcata risposta immunitaria nei confronti di quella tossina, proteina, mediatore chimico, cellula maligna o agente patogeno che costituisce il target della terapia.
UTILIZZO E NOMENCLATURA DEGLI ANTICORPI MONOCLONALI
Nella pratica clinica, i MAbs vengono utilizzati in numerose applicazioni diagnostiche e terapeutiche (sia in quanto tali, sia come agenti veicolatori di farmaci su bersagli specifici).
In ambito terapeutico essi vengono impiegati fondamentalmente come agenti:
- Immunosoppressori
- Antineoplastici
- Inibitori dell’angiogenesi
- ADC – Antibody Drugs Coniugate
- Altri (es antiaggreganti)
La nomenclatura degli Anticorpi Monoclonali è uno schema di denominazione utilizzato per assegnare il nome generico (o non-proprietario) agli Anticorpi Monoclonali.
Lo schema di denominazione sotto riportato è utilizzato sia dall'Organizzazione Mondiale della Sanità con l'International Nonproprietary Names (INN) che dagli Stati Uniti con lo United States Adopted Names (USAN) per i prodotti farmaceutici. 
Tutti i nomi di un Anticorpo Monoclonale terminano con la desinenza (-MABS). A differenza di molti altri prodotti farmaceutici, la nomenclatura di un Anticorpo Monoclonale usa differenti parti della parola precedente (morfemi) a seconda della struttura e funzione. Questi sono ufficialmente chiamate come sotto-radici (substems) e talvolta erroneamente come infissi (infixes).

I MAbs che saranno prodotti da AEQ PHARMA sono i seguenti:
1. BEVA CI ZU MAB 
2. ADA LIM U MAB
3. TRAS TU ZU MAB
4. RITUXIMAB
5. CETUXIMAB
6. PEMBROLIZUMAB
7. ANAKINRA
8. CANAKINUMAB
9. PERTUZUMAB
10.GEMTUZUMAB
Il primo ciclo di MAbs biosimilari e proteine di fusione con date di scadenza del brevetto tra il 2012-2018 include RITUXIMAB, TRASTUZUMAB, ETANERCEPT, INFLIXIMAB, BEVACIZUMAB, CETUXIMAB e ADALIMUMAB.
Sulla base delle ricerche di mercato e della domanda di partnership, AEQ PHARMA sta individuando ulteriori candidati dal prossimo round di MAbs con date di scadenza del brevetto dal 2019 al 2023. Questi includono ABATACEPT, GOLIMUMAB, OFATUMUMAB, AFILBERCEPT, ALEMTUZUMAB, DENOSUMAB, OMALIZUMAB, PALIVIZUMAB, PERTUZUMAB, ECULIZUMAB, TOCILIZUMAB, IPILIMUMAB, RANIBIZUMAB, RAMUCIRUMAB, PEMBROLIZUMAB E NIVOLUMA
M


Il primo ciclo di MAbs biosimilari e proteine di fusione con date di scadenza del Brevetto tra il 2012-2018 include RITUXIMAB, TRASTUZUMAB, ETANERCEPT, INFLIXIMAB, BEVACIZUMAB, CETUXIMAB e ADALIMUMAB.


Sulla base delle ricerche di mercato e della domanda di partnership, AEQ PHARMA sta individuando ulteriori candidati dal prossimo round di MAbs con date di scadenza del brevetto dal 2019 al 2023. Questi includono ABATACEPT, GOLIMUMAB, OFATUMUMAB, AFILBERCEPT, ALEMTUZUMAB, DENOSUMAB, OMALIZUMAB, PALIVIZUMAB, PERTUZUMAB, ECULIZUMAB, TOCILIZUMAB, IPILIMUMAB, RANIBIZUMAB, RAMUCIRUMAB, PEMBROLIZUMAB E NIVOLUMAM.


Antibodies for type 2 diabetes 

About type 2 diabetes

The condition is a chronic endocrine disorder characterized by high blood sugar (hyper-glycemia) due to diminished effects of insulin, the hormone responsible for regulating sugar levels in the blood. Type 2 diabetes is considered insulin-independent, as the issue is cell desensitization to the hormone, which means increased levels of the hormone do not improve the condition. Around 380 million people globally are estimated to have type 2 diabetes, which is the majority of people affected by diabetes. According to an estimation from WHO, more than 1.5 million people die annually as a direct consequence of diabetes.1

Market potential

The American Diabetes Association recently published a report in which the total cost of patients diagnosed with diabetes in 2017 was estimated at USD 327 billion. This included USD 237 billion in direct medical costs and USD 90 billion in reduced productivity.2 While risk factors for type 2 diabetes include genetic predisposition and obesity, nearly 90% of patients are treated with pharmacological means rather than lifestyle adjustments alone.3 4

Therefore, the large therapeutic market for type 2 diabetes is thought to amount to over USD 26 billion annually in the EU5 (France, Germany, Italy, Spain and UK), Japan and the US combined.

1. World Health Organization. Global report on diabetes. World Health Organization, 2016.

2. American Diabetes Association. “Economic Costs of Diabetes in the US in 2017.” Diabetes care 41.5 (2018): 917.

3. Datamonitor Healthcare’s proprietary diabetes survey, May 2016.

4. Datamonitor Healthcare’s Forecast: Type 2 Diabetes 2016–25

Antibody Mediated Oral Delivery of Therapeutic DNA for Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is a chronic and progressive hyperglycemic condition. Glucagon-like peptide-1 (GLP1) is an incretin secreted from pancreatic β-cells and helps to produce insulin to balance the blood glucose level without the risk of hypoglycemia.

However, the therapeutic application of GLP1 is limited by its intrinsic short half-life and rapid metabolic clearance in the body. 

To enhance the antidiabetic effect of GLP1, we designed a human cysteine-modified IgG1-Fc antibody-mediated oral gene delivery vehicle, which helps to produce GLP1 sustainably in the target site with the help of increased half-life of the Fc-conjugated nanocarrier, protects GLP1 from acidic and enzymatic degradation in the gastrointestinal (GI) tract, uptakes and transports the GLP1 formulation through the neonatal Fc receptor (FcRn), and helps to release the GLP1 gene in the intestine.

Our formulation could reduce the blood glucose from about an average of 320 mg/dL (hyperglycemic) to 150 mg/dL (normal blood glucose concentration) in diabetic mice, which is about 50% reduction of the total blood glucose concentration. 

GLP1 (500 μg) complexed with the IgG1-Fc carrier was proven to be the optimal dose for a complete reduction of hyperglycemic conditions in diabetic mice. A significant amount of insulin production and the presence of GLP1 peptide were observed in the pancreatic islets of oral GLP1 formulation-treated diabetic mice in immunohistochemistry analysis compared to nontreated diabetic mice. 

Delivery of DNA has emerged as a novel therapeutic for diverse applications. We designed a recombinant human IgG Fc fragment to attain neonatal FcRn receptor (FcRn) mediated active uptake and transport of plasmid DNA (pDNA). 

we developed an oral GLP-1 gene delivery system on the platform of cationic hIgG1-Fc-9Arg. Prolonged t1/2, less immunoactivity, and better bioactivities of hIgG-Fc-9Arg/pGLP-1 complexes appeared to be a promising approach to achieve potent treatment of type 2 diabetes treatment.

Human monoclonal antibodies that bind allosterically to the insulin receptor (INSR): XMetA, XMetS and XMetD

Many therapeutic monoclonal antibodies act as antagonists to receptors by targeting and blocking the natural ligand binding site (orthosteric site). In contrast, the use of antibodies to target receptors at allosteric sites (distinct from the orthostericsite) has not been extensively studied. 


XMetA directly activates the INSR either alone or in combination with insulin. XMetS, in contrast, does not directly activate the INSR but markedly enhances the receptor’s ability to bind insulin and potentiate insulin signaling. Both XMetA and XMetS are effective in controlling hyperglycemia in mouse models of diabetes.

 A third allosteric antibody, XMetD, is an inhibitor of INSR signaling.

allosteric antibodies to INSR can modulate its signaling and correct conditions of glucose dysregulation. 

There is possibility that the use of allosteric antibodies can be expanded to other receptors for the treatment of metabolic disorders.

Anti-ACVR2B ADCC Therapeutic Antibody (Bimagrumab BYM338)


This product is an ADCC enhanced antibody produced by our PLANT platform.

Recombinant human monoclonal antibody expressed in Plant binding to human ACVR2B. Bimagrumab is a human monoclonal antibody developed to treat pathological muscle loss and weakness.

It targets the activin type II receptor (ActRII)A and ActRIIB, preventing binding to their natural ligands which negatively regulate muscle growth, including myostatin, growth and development factor 11, and activin. It has been used in trials studying the treatment and supportive care of sarcopenia, skeletal muscle, mechanical ventilation, sporadic inclusion body myositis, and sporadic inclusion body myositis (sIBM), among others.

Anti-human SeP monoclonal antibody AE2 



Anti-human SeP monoclonal antibody AE2 as with neutralizing activity against SeP

Selenoprotein P (SeP) functions as a selenium (Se)-supply protein. 

SeP is identified as a hepatokine, promoting insulin resistance in type 2 diabetes. Thus, the suppression of Sesupply activity of SeP might improve glucose metabolism. Here, we develop an anti-humanSeP monoclonal antibody AE2 as with neutralizing activity against SeP. Administration of AE2to mice significantly improves glucose intolerance and insulin resistance that are induced by human SeP administration. Furthermore, excess SeP administration significantly decreases pancreas insulin levels and high glucose-induced insulin secretion, which are improved by

AE2 administration. Epitope mapping reveals that AE2 recognizes a region of human SeP adjacent to the first histidine-rich region (FHR). A polyclonal antibody against the mouse SeP FHR improves glucose intolerance and insulin secretion in a mouse model of diabetes. This report describes a novel molecular strategy for the development of type 2 diabetes therapeutics targeting SeP.


Antibody Drug Coniugate

L’ADC è un nuovo tipo di prodotto biofarmaceutico che si forma collegando un piccolo farmaco molecolare con una tossicità cellulare potente all'anticorpo monoclonale.
 
L'anticorpo dirige l'ADC a colpire specifiche cellule tumorali e la funzione dei piccoli farmaci per uccidere le cellule tumorali mirate. Pertanto, l'ADC ha sia la specificità dell'anticorpo sia la tossicità dei farmaci per rimuovere con precisione le cellule tumorali. Combinando il vantaggio sia dell'anticorpo che dei piccoli farmaci, l'ADC offre la migliore qualità, riducendo i potenziali danni.
La tecnologia ADC sfrutta la selettività degli anticorpi monoclonali (MAbs) per offrire nuove possibilità ai malati di cancro; questo approccio è stato approvato nella gestione di neoplasie ematologiche selezionate e tumori solidi.
Gli ADC possono essere un veicolo efficace e mirato progettato per fornire potenti agenti citotossici direttamente alle cellule tumorali attraverso il legame selettivo di anticorpo.


Contact Us

ADC with cytotoxin

ADC mode of action. ADC molecules travel to the tumor site via systematic circulation, bind to tumor surface antigens, and enter the tumor cells via receptor mediated endocytosis (internalization). The payload is released in the cytosol or lysosome to eliminate the cancer cell by disrupting important cellular pathways (microtubule assembly, DNA transcription, mRNA processing…).
Gli ADC sono un veicolo razionale per sfruttare l'interiorizzazione di CD79b per la consegna di un potente agente citotossico all'interno delle cellule bersaglio.
La preparazione di ADC viene comunemente eseguita attraverso una reazione in due fasi: 
L'anticorpo reagisce con un legante coniugato per generare un intermedio anticorpo-legante
L'intermedio anticorpo-linkante reagisce con il piccolo farmaco formando il coniugato anticorpo-farmaco finale
Le immunoterapie monoclonali a base di anticorpi contro il cancro e altre malattie infettive sono altamente vantaggiose rispetto agli approcci terapeutici convenzionali a causa della loro alta specificità e affinità verso obiettivi ben definiti. 
Gli ADC ereditano tali superiorità e, più straordinariamente, espandono la finestra terapeutica dei farmaci coniugati (Payloads), che di solito sono altamente tossici e diversi nella loro natura biochimica.

Un diagramma di flusso riassume il design di un ADC. Le correlazioni tra i diversi componenti di un ADC si intrecciano, rendendo la progettazione di ADC un processo stimolante ed interessante.
 
La progettazione di un ADC è un processo elaborato che prevede un'attenta pianificazione, un'esecuzione meticolosa e un'intensa risoluzione dei problemi. Una combinazione efficace dei componenti più adatti aumenterà notevolmente le possibilità di successo di un ADC. Con questo concetto in mente, AEQ PHARMA ha perfezionato i servizi di sviluppo ADC suddividendoli in sei moduli indipendenti ma interconnessi, proprio come la relazione tra ciascun componente di un ADC.
Al punto di partenza di un progetto di sviluppo di ADC, offriamo servizi di screening degli anticorpi, tra cui la consultazione nella selezione degli antigeni, lo screening degli anticorpi specifici per antigene, la selezione degli anticorpi interni, nonché la convalida della fattibilità di prove di concetto utilizzando "ADC Anti-Ab". 
Un farmaco adatto per il carico utile verrà selezionato e accoppiato con un linker con il meccanismo di rilascio desiderato in "DrugLnk" per assemblare la "testata chimica" per un ADC, che viene successivamente coniugato con l'anticorpo desiderato utilizzando i servizi di progettazione e coniugazione degli anticorpi.


 

INTERLEUKINE 
(IL-11; IL 4 ;IL2)

IL 11:
Interleukin-11 (IL-11) è una citochina che svolge un ruolo regolatore chiave nel sistema immunitario. L'IL-11 umano ricombinante (rhIL-11) esercita un effetto preventivo contro la morte cellulare apoptotica e inibisce la differenziazione dei preadipociti. 
L'IL-11 viene anche utilizzato per stimolare il midollo osseo a produrre piastrine al fine di prevenire le piastrine basse che potrebbero essere causate dalla chemioterapia. 
Sfortunatamente, IL 11 ha un elevato costo di produzione.
La produzione di proteine rhIL-11 nel sistema di espressione di piante sarà più economica se confrontata con l'attuale sistema di espressione basato su E. coli.
 Il gene umano rhIL-11 è stato codonato ottimizzato per massimizzare l'espressione del sistema ospite centrale. Il vettore di espressione di IL-11 sotto il controllo di un promotore costitutivo del virus del mosaico del cavolfiore 35S (CaMV 35S) è stato introdotto nel Nicotiana benthamiana mediante la trasformazione di Agrobacteriummediated. La sequenza 5'-leader (chiamata O) del virus del mosaico del Nicotiana benthamiana (TMV) come potenziatore traslazionale è stata aggiunta per costruire. 
Sono state generate piante di Nicotiana benthamiana transgeniche che esprimono vari livelli di proteina rhIL-11. Il western blotting delle linee trasformate stabilmente ha dimostrato l'accumulo della proteina rhIL-11 di dimensioni appropriate nelle foglie. Questa ricerca ha dimostrato l'efficacia dell'uso del Nicotiana benthamiana come sistema di espressione per la produzione di rhIL-11.
IL-4
Interleukin-4 (IL-4) è una citochina pleiotropica che svolge un ruolo regolatore chiave nel sistema immunitario. L'IL-4 umano ricombinante (rhIL-4) offre un grande potenziale per il trattamento del cancro, delle malattie virali e autoimmuni.
 Sfortunatamente, l'elevato costo di produzione di IL-4 associato ai sistemi di espressione convenzionali ha finora limitato test clinici più ampi, in particolare per quanto riguarda la somministrazione orale più conveniente e più sicura di IL-4 rispetto all'iniezione parenterale nei pazienti. 
Si possono produrre tabacchi transgenici che esprimono vari livelli di proteina rhIL-4. Un'espressione più elevata è stata ottenuta attraverso la ritenzione di IL-4 nel reticolo endoplasmatico (ER), con l'accumulo massimo pari a circa lo 0,1% della proteina solubile totale (TSP) nelle foglie.
Questi risultati suggeriscono che le piante possono essere utilizzate per produrre rhIL-4 biologicamente attiva.

Aequilibriu pharma VIRUS-LIKE  PARTICLES

Virus-like particles (VLPs) are supra-molecular structures composed of one or more recombinant proteins
Several vaccines for veterinary application in development. These include vaccine for bluetongue virus, rota and parvovirus.
Similar to viruses and bacteria multiple copies of the vaccine antigens are displayed in a highly repetitive and ordered, which can cross-link the B cell receptor resulting in activation of the B cell and subsequent induction of T-independent IgM responses
VLPs offer the advantage of
formulating the vaccine antigen in a particulate structure, thereby increasing the immunogenicity of the vaccine.
• VLPs are similarity to viral and bacterial structures, the ability for largescale production and the possibility of combining the VLPs with other adjuvants.
• High safety profile
• VLPs can either be used as vaccine itself or be used as carrier for recombinant antigens, either incorporated, directly, genetically fused or covalently linked.
ex; bovine rotavirus virus protein 6 (VP6) forms VLPs that are highly immunogenic and confer protection against challenge infection
Examples of VLPs used as carriers
1.well characterised hepatitis B core antigen VLPs as carrier for the influenza a M2 protein

Virus-Like Particles (VLPs) Production in Plant System

Aequilibrium pharma is a global-leading biotechnology company devoting to the first-class VLP-related services. 
Using our innovative technology, we have extensive experience in assembling a variety of VLP products derived from various virus families including HBV VLP, HIV VLP, HPV VLP, CA16 VLP, EV71 VLP, poliovirus VLP, etc. As one trustworthy scientific partner, we are always pleased to leverage our professional skills to help customers with their diverse research and projects. In particular, we have established an innovative plant-based system for VLP manufacture.
Viruses like particles (VLPs), assembled from capsid protein subunits of one or several different viruses, have been applied in a wide range of fields such as vaccines, antibody development, membrane protein expression, delivery systems, bioimaging and cell targeting. All VLPs lack viral nucleic acid and thus are noninfectious. VLPs have been produced in different eukaryotic  expression systems:
VLP Production in Plant System
We can provide all-round service package from initial construct design, expression, purification (e.g. sucrose gradient, SEC) and characterization (e.g. TEM, DSL). 
During the last two decades, plant cell system has been intensely investigated and optimized for recombinant proteins production. Biomass can be generated without expensive fermentation. This system is also proved to have a powerful machinery for post-translational modification and proper assembly of proteins. Particularly, it is capable of producing many VLP products at low cost with little risk of introducing adventitious human pathogens. Plant cells are also very versatile and flexible which can express both enveloped VLPs and non-enveloped VLPs. Of note, the resulting products can be orally delivered without destroying biological activity.
However, it is suggested that in some cases heterologous proteins expressed in planta shows extensive oligomerization for the formation of VLPs, which can lead to relatively low yield. To overcome this issue, we have developed several novel vectors based on “deconstructed” plant viruses to optimize the expression level. Currently, Aequilibrium pharma has already successfully constructed customized VLPs products using our distinctive plant cells systems such as tobacco plants, lattuce and other plants.

Aequlibrium phaema has established multiple comprehensive platforms to provide customized virus-like particles (VLPs) production services. After years of dedication, we can provide all-round service package from initial construct design, expression, purification (e.g. sucrose gradient, SEC) and characterization (e.g. TEM, DSL). Our core values are driven by a desire to help our clients to achieve scientific excellence, operate with the highest standards of integrity. 

Virus-Like Particles (VLPs) for Vaccine Development

Aequilibrium pharma has been dedicated to leveraging extensive efforts in the development of virus-like particles (VLPs)-based vaccines. During the past decades, we have established multiple leading-edge VLPs technology platforms. Focused on VLPs application with an expanding spectrum, we can guarantee our clients with the most efficient and reliable service of VLP-based vaccines development.

Virus-like particles (VLPs) are multimeric nanostructures assembled from native viral structural proteins but are devoid of any genetic material. VLPs are composed of high-density displays of viral surface proteins and as such VLPs are a highly adaptable tool for various applications (e.g. antibody development, delivery system, membrane protein expression).

Traditional vaccines have been prepared from inactivated or attenuated viral strains while VLPs which lack the viral genome, can provide a much safer alternative. Furthermore, they offer a polyvalent structure that can accommodate multiple copies of antigens and are able to elicit more potent immune responses. VLPs can also ensure tissue-specific targeting since they are originated from the native virus. These stable and versatile nanoparticles show excellent adjuvant properties capable of inducing innate and cognate immune responses. They present both high-density B-cell epitopes for antibody production and intracellular T-cell epitopes for inducing potent humoral and cellular immune responses. Currently, many VLP-derived vaccines have been licensed and commercialized in the market, and some others entered clinical trials.
The influenza virus structure (left) and synthetic influenza VLPs (right). 

Aequilibrium pharma has used the most commonly applied adjuvant aluminum salts to enhance the antigen immunogenicity and excipients for various purposes such as reduction of VLPs aggregation and preservative. In order to solve the problem that samples need to be frequently removed in fermentation followed by the processes such as cell centrifugation, cell lysis, and purification, we have developed a high-throughput platform which can perform VLPs production with high yield and purity in laboratory/manufactural scale. Our world-class VLP vaccine platform has been optimized to guarantee:

Improved immunogenicity
Reduced dosage
Better long storage stability
Eliminating the cold chain

Aequilibrium pharma now offers high-quality VLPs-based vaccines development service for worldwide customers. Our seasoned scientific staff will work closely with you to keep you apprised of project progress while taking all your goals into account. Moreover, a diverse family of in-house VLPs products is also available on our website (e.g. HBV VLP, HIV VLP, HPV VLP, CA16 VLP, EV71 VLP, poliovirus VLP, polyomaviruses VLP, AAV VLP, bacteriophage Qβ VLP, Zika VLP, etc.). Please feel free to inquire us for further discussions.

OUR SYNTHETIC VHH NANOBODY (The single-chain VHH Abs)

Aeqpharma select and validate of nanobodies derived from a fully synthetic, proprietary human VHH antibody library. The single-chain VHH Abs (nanobodies) can be easily fused to a tag (ie. fluorescent markers, enzymes, multi-Fc species) resulting in fully-functional recombinant nanobodies for a wide-range of in vitro and in vivo applications.


VHH NANOBODY PROPERTIES

Monoclonal antibodies are large molecules of about 150 kDa and it sometimes limits their use in assays with several reagents competing for close epitopes recognition. Because of these limitations, the use of smaller antibody-derived molecules has emerged.



Comparison between a VHH antibody and a full immunoglobulin


Single-chain variable-fragment (scFv) antibodies have been commonly used as alternatives. ScFv consist of only the light chain and heavy chain variable regions of immunoglobulins connected by a peptide linker. Their average molecular weight is about 27 kDa. ScFv contain the antigen-binding site and are asspecific and affine as intact antibodies. 


More recently, single domain antibodies were isolated from camelid animals; the so-called VHH. A VHH antibody corresponds to the variable region of a heavy chain of a camelid antibody and has a very small size of around 15 kDa - hence the name "nanobody". 


The advantage of these antibody-derived molecules is their small size which enables their binding to hidden epitopes not accessible to whole antibodies. In the context of therapeutic applications, a small molecular weight also means an efficient penetration and fast clearance. A VHH nanobody has a higher probability of adopting identical intra- and extracellular folding. Therefore, it is a qualified candidate for intracellular probing (Intrabody).


Being a single-domain antibody molecule, a VHH nanobody is expressed in cell without the need for a supramolecular assembly in contrast to a full immunoglobulin made of 4 chains, 2 light chains and 2 heavy chains. A VHH nanobody is more stable and robust than a whole antibody.


Both scFv and VHH nanobodies can be linked to the Fc fragment of the desired species and keep their specificity and binding properties (Minibody).

01

Innovative Production Platform
Our patented biologics platform technology identifies new therapeutic antibodies that not only bind to a target protein with high specificity and affinity — in many cases they can also be programmed to have a particular pharmacological action. We believe the technology will enable the development of more effective medicines against target proteins that cannot be addressed with traditional antibody technology. Instead, our technology focuses on GPCRs and ion channels as well as previously undruggable targets.

02

Technology Transfer

03

High Quality products

04

Ready to Global MArket
Share by: